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THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE

EFFECT OF YAW ON HEAT TRANSFER TO CIRCULAR

CYLINDERS IN HYPERSONIC FLOW

By A. J.

●

Eggers, Jr., C. Frederick
and Bernard X. Cunningham

SUMMARY

Hansen,

An approximate theory is developed for predicting the rate of heat
. transfer to the stagnation region of blunt bodies in hypersonic flight.

Attention is focused on the case where wall temperature is small compared
to stagnation temperature. The effect of yaw on heat transfer to a cylin-
drical stagnation region is treated at some length, and it is predicted
that large yaw should cause sizable reductions in heat-transfer rate.

Experiments were conducted in a so-called hypersonic gun tunnel to
obtain a preliminary check on this theoretical prediction. These experim-
ents consisted of measuring the rate of heat transfer to circtir cylin-
ders in a hypersonic air stream of nominal Mach number, 9.8, and nominal
stagnation temperature, 2200° R. Eqeriment tended to confirm theory,
showing, for example, that a 60-percent reduction in average heat-transfer
rate can be obtained by yawing a circular cylinder 70° to the .ai.rstream.. .

INTRODUCTION :’ : “ ‘
..

It has been suggested (see refs. 1 and 2) that blunting or rounding
the leading edges of wings and bodies might substantially,a~etiate aero-
dynamic heating of these regions in hypersonic flight. There is, of ‘“-
course, the added advantage that round leading edges are structural.1~ ‘-
more practical than sharp leading edges, especially when the problem of ~..
absorbing heat is considered. Another consequence of round leading edges
may be increased pressure drag. In the case of ballistic vehicles, this

. consequence is often an advantage (see ref. 1). In the case of glide
vehicles, however, or more generally any vehicles required to operate for
sustained periods in more or less level hypersonic flight, increased drag ●

v would most likely be tiewed as a disadvantage.
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Now, to be sure, rounding or blunting the nose of a body does not
always increase drag. Indeed, small smounts of blunting may reduce the
drag of a body (see, e.g., refs. 3 and 4). The ss.me,however, cannotbe -
said for %lunting the leading edge of a wing. Even small blunting causes
a sizable increase in drag.

“.
It is natural, then, to look for methods of

minimizing this drag penalty, and the possibility of yawing or sweeping
the leading edge comes to mind. Impact pressures should be, according to ‘-
‘simple-sweeptheory, decreased in proportion to the cosine squared OI?the
angle of sweep; hence, as is intuitively obvious, large sweep should sub- ----~
stantially reduce the drag penalty due to blunting. In view of this pos-
sibility it is important to inquire of the effect of yaw or sweep on heat
transfer to a blunt leading edge. —

A theoretical study of this effect was therefore undertaken, and the
predictions of the theory were checked against the results of experiments
carried out in a hot hypersonic air stream. The purpose of this report
iS to describe the problems and results of both the theoretical and e~eri- “- ‘“
mental research. A–

SYMBOLS .,.

A,B,C,
D,E,F,

I

integration constants
G,...

Cb

Cp

%3

f~(t)

f~(t)

H

h

k,

K

specific heat of body material.,ft-lb/slug ‘R

specific heat at constant pressure, ft-lh/slug ‘R

2Rbj twice the radius of’curvature of the body at the stagnation
point, ft

Jt pdt —.
paratueterof time, sec

p(;) - p(o)

~: Ptdt
parameter of time, sec

p(t)’- p(o)

reservoir pressure, lb/ft2 (unless otherwise specified)

specific enthalpy, ft-lb/slug ..

coefficient of thermal conductivity, ft-1%/ft-sec ‘R

ratio of static pressure to pitot pressure, dimensionless
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.%
M

.-+.
u n

Nu

P

Pt

Pr

q

R

.
Rb

* R~

‘Re

F,e, p

T

%

To

TO(X)

Tr

Tt

Um

U,v,w

.
U,v

L

Mach nunber, dimensionless

exponent of temperature in thermal conductivity and viscosity
functions (see eqs. (37) and (38)), dimensio~ess

Nusselt number based on a length Db and stagnation temperature
conditions, dimensionless

static pressure, 1%/ft2 (unless otherwise specified)

pitot pressure, lh/ft2 (unless otherwise specified)

Prandtl number, dimensionless

dynamic pressure, lb/ft2

gas constant, ft-lb/slug ‘R

radius of curvature of body at the stagnation point, ft

radius of curvature of the shock wave at the stagnation stream-
line, ft

Reynolds number, based on twice the radius of curvature of the
body at the stagnation point, dimensionless

spherical coordinates, feet, degrees, and degrees, respectively

static temperature, OR

temperature of the body, ‘R

temperature at the interface, x = O, with body at zero yaw, ‘R

temperature at the interface, x.= O, with body at angle of yaw A,
oR

recovery temperature, ‘R

stagnation temperature, ‘R

stream velocity, ft/sec

velocity components
ftjsec

velocity components
ft/sec

in the x,y, and z directions, respectively,

in the x and r directions,

—

respectively,
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X,y,z

x)r

6

E

Y

r

A

P

%

v

a

P

Po .

lJ~(N

T

17ACAm A55JIo2co~ 1

Cartesian coordinates, ft L —

cylindrical coordinates, ft
..

flow deflection angle, deg —

-oredimensionless coordinate, _
.&~

ratio of specific heat at constant
constant volume, dimensionless

Y y+l

(+)7-’(W, a function of y, dimensionless

WI

pressure to specific heat at
— —

angle of yaw, deg
-—— — -.,

i-–

density, slugs/cu ft . --

density of the body material,
&

Slugsycu ft

rTkdT., a function of the coefficient of thermal conductivity”
—

do
and af temperature, ft-lb/ft-sec

acute angle of shock wave relative

coefficient of viscosity, slugs/ft

(unless otherwise specified)

Lo stream velocity vector, deg —

sec

coefficient of viscosity at temperat_~e To, slugs/ft sec

coefficient of viscosity at temperature TO(A), slugs/ft sec

time constant, sec

Subscripts

conditions just behind shock wave

— —

on the stagnation streamline

conditions at the stagnation point of the body

conditions at the interface between regions 1 and 2 on the stag-
nation streamline (see sketch (a))

conditions in the free stream

.

7
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Superscripts.

.

.

.

1 first derivative with respect to the x coordinate

!! second derivative with respect to the x coordinate

THEORY

General Equations in Cartesian Coordinates

me analysis proceeds from
energy, and state for conttiuum
equations are, respectimly,

% ( )au+.pu+wb u=.
‘Puax ay az

2

the eq~tions of momentum, continuity,
fluid flow. The x, y, and z momentum

>-ga
ax [( )1~~ Pg+$+g +

3(’s9+$[”($+2)1+

( )~+++w~ = ap 2.a
‘R+puax ay az [(

au+
)1

av+aTJ +-—— -—
ay 3 by w ax ay az

2:(,$) +:[.($+9]+

$[.(*+*)]

(1)

(2)
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.

(
aw.

P*+PU e+”%+” ) [(
*-2a. “au av y +

2 ‘-a= jaz ‘~+~+az )1 .

2$(P*)+.&Jw@#+&)]+

3[@+$)]

The continuity eqution is

ap
~ + :( P”) + *(P”) + ~(P”) = o

and the energy equation is

(

ah dh ah ah

)(

ap ap ap ~
‘“x+v&+wz+x - %+u~+vy+w~ )

.&(kg)+*(k$)+*(q9 +.[2(*y+2($i+

(3)

*

(4)
1.

——

..=

while the eqyation of state is taken in the form: —

P ‘P(P,T)

mEHmm!P
.

.

#
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Derivations of the momentum and.ener~ equations are given in numerous
sources (see, e.g., refs. ~, 6, and 7). Note that the coefficients of
viscosity and thermal conductivity, and the heat capacity have been
treated as variables. It is intended that by so doing a more accurate

7

solution will be obtained for hypersonic flows with their characteristi-
cally large temperature and pressure gradients.

Let us now consider the particuhr flows of interest in this paper,
namely, those in the region of a stagnation point.

Model of Flow and Method of Analysis

It is instructive in setting up the model to consider the qualitative
aspects of temperature and velocity variations in the flow slong the stag-
nation streamline. Restricting the snalysis to steady hypersonic flow,
that is &sin 5>>1, we will assume that the surface temperature is low
co~ared to the stagnation temperature of the air. This assumption seems
quite reasonable since practicsl surface materisls will probably be
destroyed if surface temperatures are allowed to approach stagnation
temperature. It wild be assumed further that the Reynolds nuniberof the
flow is large enough so that heat conduction and viscous shearing in the
shock process is distinct and separate from the corresponding phenomena
occurring in the boundary layer adjacent to the surface of the body.
Accordingly, temperature ad velocity should vary along the stagnation
streamline similar to the manner shown in sketch (a).

Urn---------q

I
I

T@

o I I
Shock Body

wavs surfaoe

Sketch (a)
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There is an.abrupt and large increase in temperature and decrease in
*

velocity of the air as it passes through the bow shock. Proceeding from-” ‘“
the shock In the direction of the body, temperature continues to increase ~
slowly while the velocity decreases slowly towards zero. Near the surface
of the body, the air temperature ceases to increase and, in fact, begins
to fall off steeply in the direction of the body temperature. The veloc- ___._
ity of the flow must, of course, be close to zero in this region.

On the basis of these observations the following simplified model is
proposed and employed throughout this study of heat transfer in a stagna-
tion region.

U*

/ Regian I

/

Stagnation

/

streamline

I

-X8

Detached
shook wave

V*Y I Region 2

/#’

r/

Stagnation /
pOht,Xb

//~

/
v

o u, x

Interfaoo
b~tween regione

land 2

Region 1- Inoompressible, nonviscous flow

Region 2- Low-veloolty, compressible, visooue flow

Sketch (b)

Since- & is large compared to 1, MS is substantially less than 1 and
the detached shock wave is located a relatively short distance ahead of
the body surface (i.e., (XS + xb)/Rb <<1). The flow between the shock
wave and the body surface is divided into two regions. Region 1 is taken
as a domain of essentially nonviscous, non-heat-conducting, incompressible
flow while region 2 is taken as a domain of very low speed, but compres-
sible, vi.scous,an dheat-conductingflow. It is,anticipated further that
in region 2 the u and v components
component of velocity w due to yaw
values.

Now it may be demonstrated with
becomes relatively independent of x

of velocity will be very small. The
may, of course, take on rather large

b

equations (1) and (2) that a2p/by2
along the stagnation streamline in

w
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.
the limit as the disturbed flow extends only a short distance away from
the body. Inasmuch as this is the type of flow of interest here, it will

0- be assumed throughout this analysis that a~ia~ is essentially con-
stant along the stagnation streamline between the shock and the body. —

With these assumptions, the derivative tith respect to y of the
y momentum eqpation yields a differential equation that becomes tractable,
both in regions 1 and 2, when terms that vanish in the neighborhood of the
stagnation streamline are dropped. Approximate solutions to these sim@i-
fied y momentum equations are found for the u velocity along the stag- “..
nation streamline in region 1, and for the derivative of this velocity
along the stagnation streamline in region 2. The constants appearing in
these solutions are determined by matching the boundary conditions at the
shock wave and at the surface of the body, and by natching flow conditions
at the interface. This procedure fixes the locations of the shock wave
and interface relative to the body.

. The energy equation is simplified in an analogous manner, and solu-
tions valid in the neighborhood of the stagnation streamline are found
for regions 1 and 2. The rate of heat trasfer per unit area to the
stagnation region of the body follows from the solution to the energy
equation for region 2.

Let us see how these thoughts apply in the case of a two-dimensional
stagnation region.

Heat Transfer to a Cylindrical Stagnation Region

Zero yaw.- This problem has been treated for incompressible flow by
Howar’_ 7) and more recently for the compressible flow by Cohen
and Reshotko (ref. 8). Clue reason for re-investigating the matter here
is to obtain compressible flow solutions which can be extended with rela-
tive ease to the case of a yawed cylinder. h addition it was desired
to obtain solutions which may be better suited to account for real gas
effects, such as dissociation.

To proceed, then, the stagnation streamlines are taken to lie in the
x-z plane. The origin of the coordinate system is at the interface
between regions 1 and 2, and the shock-wave and body-surface locations in
this pls.meare xs and xb, respectively (see sketch (a)). For the case
of zero yaw, the z component of velocity and all derivatives with
respect to z are, of course, identically zero.

* First a solution will be found to the steady-state y momentum
equation near the stagnation streamline in region 1. Since the flow is

L assumed incompressible and nonviscous in this region, equation (2)
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simplifies to

~av+vav=+~
ax ay P by

Differentiating e~tion (7) with respect to y there is obtained

()a b

()
+auav+ av2+va2v.—

‘=x
1 aap

ay ax ~ ‘“-–af Pq

.

*

(7)

(8)

On the stagnation streamline v is identically zero ~d, therefore, ?h@x “
is also zero. In addition, the continuity equation (eq,.(4)) becomes, for
incompressible, two-dimensional flow .

au av_o _
Z+ay

Using this information with equation (8), one obtains

(9) ;

(lo) -

Treating &p/afi as a function of y only; and noting that equation
becomes a total differential equation along-~ line y . consts,nt,yields a
general solution for velocity along the sta@mtion streamline

u = Aecx + Be‘Cx (n)

where the constants A, B, and C are related by

Note that the constants may
ary conditions.

1 a%
4ABC2 =-— (12)

p ayz
—

.
be real or imaginary, depending on the bofid-

i-
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.
Now it is antici~ted that the velocity u will very nearly vanish

at the interface x = 0 (i.e., in the sense that ~/us <<1); hence B
will be approximately -A, and the corresyondfng approximate solution for9-
velocity isl

u= 2A

TO the same order of approximation,
the interface, ~’i, also vanishes.
derivative at the interface and can
and (13)> thus

b

Note
nate

tion

2AC=U0’=

Sinh Cx (13)

the second derivative of velocity at
The product 2AC is just the velocity
be evaluated from eqyations (10)

* r I azp--—
P ay2

(14)

that the negative root correctly describes the flow in the coordi-
system of sketch (b), since velocity decreases with increasing x.

Consider next the steady-state y momentum equation near the stagna-
streamline in region 2. In this domain viscous terms must, of course,

be retained and thus the derivative of eqwtion (2) with respect to y
yields

:Uapav+pavaua%
‘u axay

––+pv-fi+ v$$+p(?x)’
ayax ax ay ay2

Now close to the surface of the body the left-hand side of this expres-
sion is negligible and the right-hand side simplifies so that the eqxa-
tion may be written (see Appendix A)

(16)

.

%n the limit of zero boundary-hyer thickness, this solution is

. exactly the one to which eqyation (11) reduces.



u co~ N/WA RM A5~~
—

Along the stagnation streamline this eqyation integrates to . .

a%_ a%x+D

paxa ay2

The constant D is zero since a2u/ax2= UON =
Near the surface of the body, equation (17) can

au

In order to satisfy the boundary

b2pX2 “
——+ I’louo’
byz 2

(17) ““

O at the interface (x = O).
be integrated to obtain

(18)
..

condition at the body surface

(*)b +iJb = O, it follows from equations “(18)and (14) that

(19) —

NOW f3 and bfi/b~ can be evaluated at the shock wave since both are -
considered constant throughout region 1. In Appendix B it is demonstrated __
that for two-dimensional flow

—

()
a% 6pm2 IJm2

‘Ws=-(y
s- l)Rs2

(20)

where Rs is the radius of curvature of the-shock wave in the stagnation
region. ‘Substituting eqy.ation(20) in eqmtion (19)

?= (%9’4(%Y2+
where Rem is the free-stream Re.yuoldsnumbe-rbased

we obtain

(21)

on III..twice the
radius of curvature of the body a: the stagnation”point. ti&e also that
the effective value of 7, the ratio of specific heats, at the shock wave
is allowed to vary from the free-stresm value. In this way, cknges in
internal molecular energy which are manifest at the high temperatures
encountered in hypersonic flight can be considered.

r,

*“

.
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. There remains the problem of solving the energy equation. In
region 1, the energy ec@tion is simplified by neglecting all the tiscous
and heat-conduction terms.

. sidered here, equation (5)
two-dimensional problem con-

0 (22)

Then, fo~ the
reduces to

au aT
‘x+c~x=

for which the solution is

(23)

It can be seen from eqxation (23) that the interface temperature To is
approximately the stagnation temperature Tt, since the velocity at the
interface nearly vanishes. The stagnation temperature is, of course,

. given by the integral equatfon

(24)

where for very high velocity flow the lower limit of the integral will be
neglected.

Next consider the energy equation in region 2. Proceeding in a nvan-
ner analogous to that used in stu~ng the y momentum eqpation in this
region, we neglect the terms with the factors U.,V, &/bX, and &7/ay.
Thus equation (5) becomes simply the heat-conduction eqwtion

Hks+$(k$)=o (25)

The coefficient of thermal conductivity, k, is considered a known function
of temperature (pressure is essentially constant). Thus a new function of
temperature, q, nay be defined such that

J’

T
q= k dT

o

Then equation (25) maybe expressed in terms

(26)

of the function q

(27)
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Inasmuch as the body boundary is cylindrical,
general solution to equation (27)in terms bf
Thus

w

NACA R14A55E02

it is convenient to use the
.

the polar coordinates (T, e).

(28)

The origin of the coordinate system is now taken as the center of curva-
ture of the body, and e as the acute angle between the radius vector ~
and the stagnation stre~ine. H a surface temperature is asswed inde-
pendent of the angle 0, the solution on the stagnation streamline (0=0)

—

reduces to

q=qb+Bln
$+! cn’n[’ -($)7

n=l

(29)

Letting ~ = 1 + s, where e is very
Rb

expanding equation (29) in a series of

.
small cbmpared to unity, and

ascending powers of G, we obtain

(30)

‘here G ‘s ‘heConStint$ ‘r -nc=)l;;s ‘nticated by‘his - ‘“’
n=l

equation that q varies essentially linearly with e, since E2/2 is
negligible compared to e and terms of higher order in e should be
very small indeed.s Since e = (xb - X)/Rb< < 1, eqution (30) can be
written

(30

‘The dependence of surface temperature on’-~ should be sm&ll in the
stagnation region. .

31t should be painted out that this argument hinges implicitly on
the assumption that -q is a weak function of e near the stagnation
streamline. 4
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According to this expression, the rate of heat transfer per unit area to
the

The
and

sta&ation region of the body is

(32)

stagnation-line coordinate xb is
the rate of heat transfer becomes

‘b

substituted from equation (21),

A Nusselt number is defined
using a characteristic length equal to twice the radius of curvature of

for interface temperature conditions

the body and a temperature potential of (T. - ~); thus

2%’ Rb
Nu=-

~(To - %)

or, substituting from eqpation (33) into (34)

(34)

(35)

For a relatively cool body in hypersonic flight, it is possible to dis-
regard the lower limit of the integral and the value of body tempera-
ture ~ compared to the interface temperature To.

Note that the solutions givenby eqyations (33) and (35) canbe used
for the case where viscosity, thermal conductivity, and specific heat are
arbitrary functions of temperature. For instance, these functions can be
calculated to include the effects of vibrational and dissociational molec-
ular energy if the extent to which these energy modes are excited is known
throughout the flow. It is sufficient for the most part in this paper to
consider the specific heat a constant and the viscosity and thermal
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conductivity as proportional to the nth power of temperature. In this

(case from equation (24) note ~ = 1,
“)

L>>l
Tt Tm

v

Noting that

(36)

.-

(37) -

and that
.

(38) --- -.

it is seen that the expression for I!?usseltn-her (eq. (35)) becomes
—.

—.. —

and the rate of heat transfer per unit area to the stagnation region of’
the body is, in terms of free-stream conditions,

(40)

These considerations complete the zero-yaw analysis. However, before . ‘“
—

undertaking the study of effects of yaw on heat transfer it is appropriate
to make a few remarks. By way of introduction it should be pointed out
that a procedure quite analogous to that just described for treating a w
cylindrical stagnation region can be employed to treat an axially symnetric

~
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.
stagnation region.
Appendix C. There

The results of such an analysis are presented in
is then the general question of the legitimacy of the

several assumptions underlying the yresent treatment of stagnation-point
flows. In order to shed some light on this matter it was undertaken in
Appendix D to examine the solutions obtained to see whether they are con-
sistent with these assmnptions and with pertinent results obtained by
others. W this regard it is shown that the presumption of a constant
second derivative of pressure normal to the stagnation streamline yields
solutions for the distance between shock wave and body which are quite
close to observed values. Next, it is demonstrated that, as assumed, the
velocity u is negligibly smll throughout region 2 under continuum flow
conditions. Then it is shown that the largest of the viscous dissipation
terms neglected in the ener~ eqpation for region 2 is indeed small com-
pared to the heat-conduction terms. It is found too that the analysis
predicts an amount of heat conv-ectedinto region 2 which is the proper
order of magnitude to account for the heat transferred to the body.
Finally, it is shown that under comparable conditions equation (35) of
this paper ~redicts essentially the same heat transfer as references 7.
and 8.

-1 In view of these results it would seem that the simplified analysis
presented here for stagnation-region flows is, while on the one hand cer-
tainly approximate, on the other hand quite capable of predicting useful.
information. Accordingly, we proceed to the study of effects of yaw on
heat transfer.

yaw.- ~ this case
tion ~parallel to the
sketch (c)). ‘l%enthe
all z derivatives are

the x direction is normal to and the z direc-
stagnation line of the body (see plan view,
z component of velocity has a finite value, but
again zero.

\

Region I

’523:*4.‘+
u~

“I

Detaohed
shook wave

(x=o)

Region 1- Inoompressible, nonviscous flow

Region 2- Comprsssible, vleoous flow

Sketch (c)
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The y momentum equation in region 1,
to y, takes the ssme form as eqmtion (10)
Thus the velocity u is again given by the

The z
becomes, on

NACA RMA55E02

.
differentiated with respect
on the stagnation stresail.ine.
solution .

.— .. ..—
1u=--
J-
-&&sinhcx

c
(41) “-

P af

momentum eqwtion for the stagnation streamline in region 1 —
dropping the negligible terms from equation (3),

Uy=o
ax

(42)

— .
which hRs the solution

w’ = 7mRTmMm2sin=h

since the transverse component of velocity is unchanged on passing
the shock wave.

The energy equation for the stagnation streamline in region 1
to a form similar to equation (22)

u au—+wg+$g=o
ax

which has the solution

J

Tt
U2 + 7=RT&#l&2sin2A

~dT =

T
2.

.

(43)
.

tqrough

reduces

(44)

(45)

where again the,stagnation temperature Tt is given by equation (24).

At the interface where the velocity u is negligible, the temperature

TO(A) is given by the solution to

p%

J CpdT =

TO(A)

t(46)
.

*
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.
which, for a constant heat capacity, ~, is

?

The differentiated

TO(A)
—=
Tm ()~ Q2COS%

Y
same form on the stagnation
solution is

19

momentum equation for region 2 takes on the
streamline as equation (16). Hence, the

.

(47)

and the body sti~tion point coordinate is
.

Now, however, the second derivative of pressure
angle of yaw (see Appendix B),

(48)

6P %m2COS%
=-

(49)

is a function of the

(7s - l)R.2

so the stagnation-point coordinate is given by

(50)

(7-)

In region 2, the solutions to the z momentum equation and the energy
equation are considered simultaneously. The z momentum eqyation simpli-
fies (to the order of this analysis), in the region of the stagnation
streamline, to

:(’=) +$(’%)=0 (52)
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Similarly, the ener~ equation near the stagnation streamline in region 2
may be written (note that awlay iS zero by synmetry)

(53)

In order to facilitate the solution of eqyation (52), it is helpful
to observe that the yawed boundary layer, identified with the w compo-
nent of velocity, reseniblesthe boundary layer on a flat pkte. It might
be anticipated then &at, just as in the case of the flat @ate, the
variation of w wfth x is relatively insensitive to variations of p
with X- In this event equation (52) has the approximate form

(54)

The solution is taken in polar coordinates in order to conveniently fit
the boundary condition that w is identically zero at the body surface.
!l!henfoll.owingthe same arguments used in de!rivingequations (29) and (30),
one obtains on the stagnation streamline

.

.

—

a?

..

w= ‘~:+z’c@T-(9=1 ‘1(++0( ’3) ’55)._
n=l

where again e=(?/Rb)-l <<1. If second order and higher terms in e
are neglected, the z comyonent of velocity on the stagnation streamline
becomes, in terms of x/xb)

whence

w ()=Wo 1 - ~Xb (56)

.

(57)
.

w
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.
If this result is substituted for the kst term in eqktion (53),

the energy equation becomes
1

(58)

A solution for equation (58) which satisfies symmetry conditions on the
stagnation streamline and also the boundary conditions that q and IL are
constant along the surface of the body is

(59)

.

where L is a mean value of v in the sti~tion
tion (59) is expanded in terms of e, q takes the

. stagnation streamline

region. 1% equa-
following form on the

.

.

The constant J is evaluated by letting q be q. when e is eo.xb/Rb
and is given by

J=

The rate of heat
body at angle of

the relation

transfer per unit area to
yaw X is, from equation

+Eo) + . . . (61)

the stagnation region of the
(6o),

(62)

Substituting equations (26) and (61) into this expression and neglecting
terms of the order GO compared to 1, one obtains

‘~b‘(h) =

*c(’)kd’+y)

(63)
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Multiplyi~ by
~b

and substituting from eqqation
ko(To - Tb)

(51) yields -
.

For a constant heat capacity it follows from equations
and (47) that

TO(X)

~
= COS2A

W02

!

—=2~sin’ATo

(64)

(23), (43),

.

(65)

If, in addition, the thermal conductivity is proportional to the nth
power of temperature, then

J’

TO(A) ~o#ll+

ko(T:-Tb) ~ ‘“ P(&%J+’l‘dT= (n+l)(l ‘%/To)
(66)

and

pwoz

()F Pr Sin2A P Prcos% sin’1

2ko(To-Tb)= % ‘“PO(A) l-M/To
(67)

.

.
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‘I%USeqyation (64) becomes

2qb’R

ko(To - Tb)b =*(+y’4@J’2(3T’’~;:c::;:o:

{co’”F-(To~.i7+=l+(’+’%?xJ ““~}

(68)

The ratio of equation (68) to equation (39) is the ratio of the rate
of heat transfer to the stagnation region of a yawed body to the rate Of
heat transfer to the stagnation region of the same body at zero yaw. This
ratio is

~b‘(~)
n+l/2

Cos A—=
~’(o) l-(@o)n+l

(69)

An analogous expression can be obtained for the ratio of ?fusselt
numbers, thus,

(70)

where from equation (63) the recovery temperature, TrJ is the solution to

J’
TO(A) ~wo=

kdT=-~ (7U
%

However, it should be noted that the assumptions used in the analysis
tend to be tiolated when the body temperature approaches recovery condi-
tions. Therefore it should not be expected that equation (71) will yield
accurate values for recovery temperature.
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There remains, of course, the problem of determining ~. It is suf-
.

ficient for the purposes of this report to take ~ as simply the arith- ——
metic average between LLo(~)and Pb, that is, ji=[wo(~)+pbj/2.4 ti this c
event equation (69) can be written

?b‘(A)
—=,:o:~n+1{cos2, ~-~*Jn+l]+ -
qb’(d

—

.-

(72)

which in the case of a relatively cool surface (i.e., Tb/Tocos2h < < 1)
becomes

8
—

(73)

.

These considerations complete the theoretical analysis. Attention
is turned next to the experimental investigation.

EXPERIMENT

Test Apparatus —

In order to investigate hypersonic heat-transfer yhenomena, it was
undertaken to develop an apparatus capable of~roducing a hot hypersonic
air stream. In addition to the air stream being hot (i.e., characterized _ .:
by stagnation temperatures of the order of thousands of degrees Rankine),

4Actually this procedure might better be considered the first step in
an iteration method.where ~ is recalculated on the basis of the precedi-
ng calculation of T as a function of x. This refinement is not con-
sidered warranted here where only the gross effects of yaw for angles of

—

yaw well less than 90° are of principal interest. As the angle of yaw
approaches 90°, the analysis as a whole tends to break down due to the

.

violation of the several assumptions predicated on the flow being hyper- —

sonic normal to the axis of the cylinder. ● -
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. it was required that the stream be of sufficient duration to facilitate
measurements of heat transfer. The apparatus which finally evolved is
termed a hypersonic gun tunnel simply because it combines a gun with a

T wind tunnel. -much as this gun tumnel has not been described in gen-
erally available literature, a brief description of its operation, cali-
bration, and performance till be given here.

A schematic diagram of the equipment is shown in figure 1. A smooth-
bore gun is used essentially as a one-stroke pumy to create a reservoir
of high-pressure, high-temperature air. A charge of fast burning powder
is burned at the breech to accelerate the light-weight piston to a high
velocity in the barrel. The accelerating piston produces strong shock
waves which reflect a number of times from the blanked end of the barrel
and the piston. These shock waves ccmpress the air in the gun barrel in
a highly nonisentropic manner, transforming much of the energy available
in the powder charge to the form of heat in the air. Accordingly, a res-
ervoir of very high-temperature air should be created.s As soon as
equilibrium pressures have been reached in the reservoir, the valve clos-.
ing the entrance to the nozzle is opened and the high-temperature, high-
-pressureair expands through the nozzle into the test section where models

. are located.

Figure 2 is a photograph of the present model of the hypersonic gun
tunnel. This unit consists of a 20-nmLsmooth-bore barrel 5 feet long
with a breech chambered for the standard 60/20 cartridge. The barrel is
initially charged with dry air at 10 atmospheres pressure and room tem-
perature.e A 20-mm diameter piston constructed of nylon and weighing
3-3/4 grams is used, and the cartridge is loaded with 27 grams of ~
No. 4227 rifle powder. The nozzle valve is released 80 milliseconds after
the powder charge is ignited. In this time the reservoir conditions, as
indicated by pressure measurements, have approached steady values. The
flow exhausts through the nozzle into a vacuum tank. This tank, seen in
figure 2, has a volume of 10 cubic feet and is pumped down to a pressure
less than 0.0007 atmosphere before each test. 331this manner sufficient
compression ratio (up to 4~04) is provided across the nozzle to maintain
hypersonic flow in the test section during the course of the run.

The nozzle through which the flow expands is fabricated of stainless
steel and has a simple conical contour of 9° total angle and a l-inch

%Appendix E an estimate is made of the final temperatures tht
may be obtained from this nonisentropic compression. It is indicated
that for a compression ratio of about 32, the ratio of final to initial
temperature wotid be between 4 and 7. The corresponding isentropic com-
pression process would yield a final to initial temperature ratio of only
about 2.

.
%igher final air temperatures should, of course, be obtained if the

initial air temperatures are increased. This possibility is presently
. being investi~ted.
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exit diameter (see fig. 3). While the flow is thus e~anding conically,
the rate of expansion is slow in the region of the models and for most
practical purposes the flow may be considered parallel. The throat of
the nozzle is a cylindrical section 0.020-inch in diameter and O.OSO-inch
long. This section is machined as a seyarate insert and can be replaced
when the nozzle throat becomes seriously eroded by the heated air.
Because of the length of the throat section, several runs can usually be
made with one insert before erosion becomes serious in the sense that it
increases the effective sonic throat diameter.

Calibration of Flow

Properties of the hypersonic stream produced by the gun tunnel were
obtained from the following four measurements: reservoir pressure, pitot
pressure, static pressure, and stream velocity. The reservoir pressure _
was measured with the gage shown in figure A(a). The piston of the gage
was housed in an insert which connected to-an orifice leading to the
reservoir section.of the bariel (figs. 1 agd 2). The O-ring seal near
the bottom of the piston prevented leakage from the reservoir to the
atmosphere, and the entire unit was retained by a yoke which was bolted ““
to the side of the reservoir. The piston transmitted the pressure force
from the reservoir to strain-gage elements which were electrically co_n- . -
netted to a conventional bridge circuit, amplifier, and recording oscil-
loscope. The time required for the reservoir pressure to reach equilib-
rium was deduced from measurements made with a low-sensitivity gage

.—

element. A typical record of the initial pressure pulses is shown in
figure 5(a), and it can be seen that these pulses are damped in well less
than 0.06 second. The measured peak values of the first pulse or two are ““
probably lower than the actual pressure maxima because of the inertia of
the gage.7

The reservoir pressures used for calibration were measured with a
high-sensitivity-gage element which was mechanically stopped at 403 atmos-
pheres so that the peak pressure would not damage the gage. The average-
pressure for all runs is shown in figure 5(b) together with the stankd
deviation from the average. This deviation was within *1O percent. The
timing pulse shown in the figure corresponds to the signal superimposed
on the oscilloscope record when the nozzle valve was opened. This pulse
was taken as the zero time reference for the beginning of flow throu@
the nozzle.

The pitot pressure was measured with a conventional, strut-mounted
probe constructed from a O.050-inch O.D. hypodermic needle (fig. A(b))
withan outer to inner diameter ratio (0.D./I.D.) of 1.47. The probe led

71t may be of interest that the frequency of these measured pulses
is nearly identical to that predicted by the method of characteristics.

.
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.
to a variable-capacitance diaphragm-type pressure cell (fig. l(b)) con-
nected to a bridge circuit, amplifier, and a recording oscilloscope.

9 The response time of this system appeared to be instantaneous fo~ prac-
tical purposes. The average value of the ratio of the pitot pressure
(measured onthe nozzle centerline) toreservoir pressure is shown in
figure 5(c). This ratio is approximately constant at 6.6x10-4 during
the first 0.3 second but then, for some unexplained reason, jumps to a
higher value and holds approximately constant until about 0.6 second.a
For the first 0.3 second, standard deviation limits shown in figure 5(c)
are within 4 percent of the average.

The static pressure was also measured with a conventional type probe
consisting of a 13° included angle cone-cylinder combination of 0.050-inch
O.D. mounted in the same manner as the pitot probe. The pressure orifices
were located at the test station and, to determine if the measured values
of static pressure were grossly influenced by Reynolds number effects or
feedback, a series of probes were tested. These probes had forebodies

. and afterbodies that ranged from 30 to 60 diameters in length as measured
from the pressure orifices to the tip of a probe and to the leading edge
of the strut, respectively (fig. 4(c)). Each probe was connected to a

. capacitance pressure gage which differed in only one respect from that used
for pitot pressure measurements. This difference was that a thinner dia-
phragn element was used in order to obtain the necessary instrument sensi-
tivity at the lower static pressures. The pressures measured on the nozzle
center line with the several probes were essentially in agreement, and the
value of measured static to reservoir pressure for all runs is shown in
figure 5(d). The standard deviation limits for the first 0.3 second are
within 8 percent of the average.

Now it seems reasonable to expect that the stream static pressure
actually varies like the pitot pressure during this interval of time;
that is to say, changes in p/H with time (fig. 5(d)) are due primarily
to the finite response time of the static pressure measuring system.
With this thought in mind the measured data on p/H have been reduced
in the manner described in Appendix F. The corrected value of p/H is
found to be 7.32fi0-6 for the first 0.3 second of run. The corresponding
value of p/pt during this interval is 8.06xI-O-S.

Pitot and static pressures were also measured l/8-inch off the nozzle
center line, and they were found to agree with the center-line measure-
ments to within the standard deviation.

‘The flow does not actually choke to subsonic speeds until about
1.0 second, but after 0.6 second it is rather erratic. Accordingly, the
flow was calibrated only over the interval from O to 0.6 second. It was

. found that the jump in pitot pressure occurring between 0.3 and 0.4 sec-
ond is accompanied by unpredictable changes in static pressure, in shock-
wave profiles about models, and in heat-transfer measurements.



The stream velocity was obtained by determining the rate at which a
disturbance passes through the test section. This disturbance was pro-
duced by the spark discharge of a 0.5 mfd capacitance at 10 kilovolts
across electrodes mounted in the stream ahead of the test region (see
fig. J(d)). The position of the disturbance in the test region was
recorded photographically with a schl.ierenapparatus using a spark dis-
charge light source. The velocity of the stream was then taken as the
distance between the tiys of the spark electrodes and the center of the
disturbance divided by the time interval between the disturbance spark
discharge and the schlieren exposure.g Some typical schlieren photographs
of different disturbances are shown in figure 6(a). (At the bottom of
the test region can be seen a blunt test probe and its associated shock.
wave system.) Measurements of velocity were made”for separate runs over
the range of flow time from 0003 to 0.60 second. The flow the was again
measured from the opening of the nozzle valve. At each flow time, a
series of runs were made in which the time interval between the disturb-
ance discharge and the schlieren exposure was varied. The data, shown
plotted in figure 6(b), appear to be relatively independent of this time
interval, and it is therefore concluded that any consistent error exist-
ing in the velocity measurements is small.

. —
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The reservoir pressure was not used directly to determine stream
properties, since it was considered unjustifiable to assume that the
expansion of air from reservoir to test region satisfied the usual isen-
tropic relations. However, the reservoir pressure was used to nondimen-
sionalize the measured static and pitot pressures, inasmuch as the ratios
p/H and pt/H were more consistent from run to run than the absolute
pressures. pertinent stream properties were then determined in the fol-
lowing manner. At hypersonic Mach numbers, the ratio of pitot pressure
pt to dynamic pressure ~ is approximately independent of Mach number,
namely,

Y 7+1

(’m

The function r(7) is very nearly constant, varying only from 0.920 to
0.977 as 7 varies fromlo4 to 1.1. Then, the unknown stream parameters
are, in terms of the measured properties

—
———

density, pm = pt/rUm2

static temperature, Tm =
}Pm/PmR= (wm2hJPt . (75)

J
~he electrodes were of slender (15° wedge 0.075 inch thick at root) - _

cross section in the streamwise direction, so that while they might alter
stream Mach number, they were unlikely to appreciably influence stream
velocity at the h~ersonic speeds of these tests.

w-
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and the stagnation temperature Tt is the solution to

(76)

The measured velocity of the stream is nominally 50W ft/sec.10
Then, if ideal gas values are used for heat capacity in equation (76),
the stagnation temperature is 2200° R. If vibrational ener~ modes are
fully excited in any part of the flow, the correction for this caloric
imperfection might decrease the stagnation temperature to 2100° R (see
refs. 9 and 10). This correction is within the deviation in velocity
data, however, and therefore was not applied.

The ratio of static to -pitotpressure, 8.06f10-3, yields a Mach num-
ber of 9.8 (eq. (75))and the initial values of the pitot and static pres~
sure are 0.224 and 0.0018 atmosphere, respectinly. These pressures,

● and therefore the density also, fall off approximately exponentially dur-
ing the flow. Accordingly, the nominal free-stream Reynolds number also
decreases with time and is given approximately by the rehtion, Re = 1.26

. e-t/0=6 million per foot.

The stream properties given above are all reproducible within 10 per-
cent. It will be noted that the stream velocity appears somewhat lower
than the nominal value at the beginning of the flow (see fig. 6(b)). This
result may be due to the initial cooling effect of the sonic throat region
and the reservoir. In any case, however, this decrease in velocity is
within the standard deviation of the data, and the naninal value of veloc-
ity will accordingly be taken as 5000 ft/sec for the entire interval of
flow.

In addition to the above calibration, the purity of the air stream
was tested by analyzing gas samples with a mass spectrometer and samples
of condensable phase impurities by X-ray diffraction and emission spectro-
graph methods. The gas samples were collected with a pitot tube leading
to an evacuated glass flask. At a predetermined the of flow, the copper
tubing leading to the flask was sealed with a hydraulic pinch. The con-
densable phase impurities were simply collected by impact on a spectro-
graphic grade copper rod and time scale effects were differentiatedby
using a movable rod within a shield.

It was found that the gas samples were essentially normal air except
for about l-percent carbon dioxide and a trace of nitrous oxide. AS

expected, the percentage of these impurities increased as the sampling

1°Velocities up to about 80CXIft/sec have been obtained using larger
powder charges. This result implies stagnation temperatures in excess of
5030°R. Dmage to the gun barrel was, however, excessive to the point
of being intolerable under these circumstances.
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time interval was lengthened. The condensable phase impurity was found
to be iron oxide, undoubtedly originating fron observed areas of erosion
in the reservoir and the nozzle throat. Samples taken at the beginning
of flow showed very light film deposits of impurities, and for this reason
it is felt that the initial heat-transfer rates measured at the beginning
of flow should most nearly represent the correct values for normal air.11
Therefore, only these initial data are interpreted in the following por-
tions of this paper. This procedure also serves essentially to eliminate
the.problem of evaluating heat-loss corrections for the heat-transfer
models since these corrections must vanish at zero time when thermal gra-
dients along a model are zero.

Heat-Transfer Models and Reduction of Data

The models used in the heat-transfer experiments were tested at the _
same station at which the pitot and static pressure data were taken.
These models were butt-welded iron-constantan thermocouple cylinders
(fig. 7(a)) transverse totheflow atvarious angles of yaw. Wires of
0.003-, C).O1O-,0.012-, 0.020-, and O.@O-inch diametef were tested at
zero yaw. The 0.(X13-inch-diaeterwire was tested at 22.5°, 45°, and 70°
angle of yaw and the 0.020-inch dis.meterwire was tested at 45° yaw (shown
installed in the test region, fig. 7(b)).12 The thermocouple junctions
were exsmined microscopically and were rejected if the weld showed visible
imperfection.

The Uffusivity of the thermocouple material ~s sufficiently large
to permit the assumption that temperature gradients across the thermo-
couple junction were negligible (i.e., the time of diffusion to within –
95 percent of constant temperature is very much less than the time con-
stant of response of the thermocouple to heat transfer from the air
stream). Thus the average rate of heat transfer per unit area to the
models was proportional to the rate of chmge of temperature indicated
by the thermocouple junction. Under these conditions the average heat-
transfer rate satisfies the rektion

—
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(77) ‘- “- ‘“—

%!he possibility of these impurities causing errors in the heat-
transfer data is considered further in Appendix F.

12The ratio of length to diameter of all test cylinders was 25 or
greater. In the case of the yawed cylinders this ratio was always in
excess of 50. Accordingly, it is felt that end effects on measured heat-

.

transfer rates are negligible, with the possible exception of the data
for 70° yaw. .
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.
where T& is the temperature of the thermocouple with radius ~, speci-
fic heat Cb, and density @ (note

%?!iron and constantan). It is convenien n
cylinders at zero yaw to employ an average
defined by the equation

is essentially the s&e for
the analysis of data for th~
heat-transfer coefficient h

It follows that the average Nusselt number, based on
ture conditions and a characteristic length equal to
cylinder, is given by the expression

&b Rb2cb@ dTb
m=—=

kt
kt(Tt - ~) ~

(78)

stagnation tempera-
te diameter of a

(79)

Figure 8(a) shows the output from the 0.~3-inch-dismeter transverse
thermocouple for a typical zero-yaw run. The rate of temperature rise
drops below expected values after about 0.05 second. At about 0.3 second
the record indicates some perturbation in the flow as did the si%tic and
pitot pressure measurements, and observed shock-wave profiles. The initial
temperature rise, which is of principal interest here, repeated to within
*1O percent from run to run. In order to measure this initial rise more
accurately, the oscilloscope sweep speeds were adjusted to give about 45°
slope of the temperature-time curve. A typical temperature-rise curve on
the expanded-time scale is shown in figure 8(b).

RESULTS AND MSCUSSION

The theory of this report treats, of course, only the heat transfer
to the stagnation region of a body in hypersonic flow. Nevertheless, for
a relatively blunt body, such as a transmrse cylinder, it seems reason-
able to expect that in hypersonic flow, just as in lower speed flow, the
average rate of heat transfer will vary in proportion to the stagnation-
region heat-transfer rate. With this thought in mind, it is noted that
according to equation (39) for a cylindrical stagnation region
(A=O,n= 1/2, ~/T. <<1)

Nu -]@@ (80)

.
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If Rb/R~ is considered constant (~resumablyat some value near 1), .

then it is easily demonstrated that

(81)

neglecting small differences between W. and v .

?

This is essentially
the result deduced experhnentally,byKovaznay ref. 11) and by others
for the average Nusselt numbers of cylinders transverse to subsonic and
supersonic flows. The eqerimental data obtained in the hypersonic gun
tunnel should provide some indication of whether or not the result holds
in the same sense for hypersonic flows. These data for transverse cylin-
ders are presented in figure 9,1s along with the predictions of equa-
tion (81.)(replacing Nu with NT) and with data obtained from hot-wire
type experiments by Kovaznay (ref. 11), Stine (ref. IZ), and Staider,
Goodwin and Creager (ref. 13). Specifically, there are shown (after the
method of Stine) the average Nusselt numbersas a function of M Re#r.

$?The agreement between the data obtained from the hypersonic gun unnel
and those obtained by the hot-wire method is surprisingly good consider-
ing the @de difference in test conditions14 (e.g., as contrasted to the
gun-tunnel data, the data of reference 12 are for Mach numbers less than
1.4 and stagnation temperatures less than 590° R). Note, too, tkt the
scatter of the data from the gun tunnel is by-and large of no greater
order of magnitude than that of the data in references Xl, 12, and 13.
Finally, it is observed that equation (81) is quite as consistent with
experiment at hypersonic speeds as it is at lower speeds. Evidently,
then, average rates of heat transfer to tran:yerse cylinders in hyper-
sonic flow do tend to vary in proportion to the stagnation-regionheat-
transfer rates.

.—
—

.
—

.

—

It is appropriate to inquire now about the effect of yaw on the rate
of heat transfer to a cylinder in hypersonic-flow. Tn this regard it is
of interest to see first what theory predicts for the effect of yaw on
heat transfer to a cylindrical stagnation region. Two cases will be

——

treated, nsmely, ~/T. = O and ~/T. = 0.24, the value corresponding to
test conditions in the hypersonic gun tunnel! If Prandtl number is taken
equal to 3/4, and the temperature exponent for the thermal conductivity—- ‘-

13Note that while the test Reynolds numbers are low, they are, accord-
ing to estimate, within the range of continuum laminar flow.

—

‘%hile the stagnation temperatures of the hypersonic gun tunnel were
far greater than those of the other tests, it should be noted that they .
were well below temperatures at which dissociation might be expected to
occur and, hence, possibly influence heat trfisfer.

—
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.
and viscosity functions is taken as l/2,E then according to equation (72)
the stagnation-region heat-transfer rate is influenced by yaw in the man-
ner shown on figure 10. For the case of ~/T. = 0, it is indicated that
yaw should reduce the rate of heat transfer almost in proportion to COS2X
(note this is the same reduction factor as for impact pressures). For the
case of ~/T. = 0.24 the predicted reduction h rate of heat transfer is
somewhat less, although still very sizable. How well this prediction
agrees with measurements of average heat-transfer rates to yawed cylinders
in the hypersonic gun tunnel is shown in figure 11. The average rates are
observed to decrease with increasing yaw in much the mm.ner predicted by
the stagnation-region theory. For example, at 70° yaw, theory and experi-
ment show about a 60-Percent reduction in heat-transfer rate.

The stagnation-region theory and hypersonic gun-tunnel experiments
have, then, provided useful information on the problem of heat transfer
to cylinders in hypersonic flow. However, all of the considerations,
both theoretical and experimental, up to this point have been for the
case where the gas does not dissociate and therefore the gas properties
vary with temperature in a somewhat ideal manner. At the very high tem-
peratures encountered in @-personic flight (nsmely, at temperatures in
excess of about 5(N0° R) gas molecules may dissociate into atoms. It iS
natural then”to inquire how dissociation might alter our previous con-
clusions. Accordingly, the effects of equilibrium dissociation on the
rate of heat transfer to a cylindrical stagnation region at zero yaw have
been examined theoretically in Appendix G. The calculated heat-transfer
rates are increased by dissociation at Mach numbers greater than 10 (see
fig. 12). It is suggested, then,”that equilibrium dissociation (should
it occur) may alter our pretious conclusions regarding the effect of yaw-
ing a cylinder to the extent that somewhat greater reductions in heat-
transfer rates will be achieved. This possibility derives from the fact
that the high temperatures which bring about dissociation tend to be
decreased by yaw.le

CONCLUDING RIMAIUKS

It has been argued theoretically and demonstrated experimentally that
yaw can have the effect of substantially reducing the rate of heat transfer

%he 1/2 power law is, at the very high temperatures encountered in
hypersonic flight, a rather good approximation according to Sutherland’s
equation (~ = const), although actually the results of theory are reh-
tively insensitive to n (except at very large yaw) over the range
1/2 <n< 3/4.

l%t is perha~s worthy of note, too, that by the same token radiation
heat transfer from the high temperature disturbed air to the body surface
should be alleviated by yaw.



34 NACARM A55EKX?

to a circular cylinder in hypersonic flow. Experiments on small cylin- ‘
ders in a hypersonic air stream of Mach nuiber 9.8 and stagymtion
temperature 2200° R tended to verify this prediction, indicating that
the rate of heat transfer was reduced to about 40 percent of its zero-

=-

yaw value when the angle of yaw was 70°. These results are interpreted
to have the practical significance that sweep nay markedly reduce the
heat transfer per unit area to the blunt leading edge of a wing in hyper-
sonic flight.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., May 2, 1955
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SINl?LIFICATIONOF TEE y MWNTUM EQUATION IN REGION 2

The steady-state, two-dimensional y momentum eqyation (see eq. (2)),
differentiated with respect to y, yields

-----[’L: +:)l+2~(’%)+&[’G+ %)l(”)
a2p 2 a2

= af 3a9
.

Now on the stagnation strea.ml-inethe velocity v fS identically zero
and therefore all x derivatives of v are zero. Also, all odd order
y derivatives of functions like density p, tiscosity w, pressure y,
and velocity u vanish since, by symmetry, these functions are even.
In addition, it is assumed that near the stagnation streamline the veloc-
ity u is so small throughout region 2 that terms with this factor may
be neglected. With this assumption an additional useful relation can be
deduced frcm the continuity equation

au:u~+ph+v aho (A2)
‘ax h ay ay

Eliminating the terms with factors u, v, or ap/ay from equation (A2)
there results, as for incompressible flow,

(A3)

Note that all
regions where

Applying

derivatives of the sum &@x + &/ay are also zero in the
eqdation (A3) will hold.

the above considerations simplifies equation (Al) to

2

(a) 7( ’$)+ 55[’(%+=)1
a2p+ p a2paJ .-—

Y ay2
(A4)
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Now it will be assumed,
of the stagnation point
the stagnation point of

N4CARMA551Z02

.
as is usual, that the viscous flow in the region
of a blunt body is similar to viscous flow at
a 6odY with infinite radius of curvature insofar l--

as the ~elocity-derivatives are concerned (i.e., the principle effect of
the body curvature is to determine the magnitude of the pressure deriva- j

—

tives). Accordingly, a3v/aF and a%/afi till be supposed tO vanish
in the stagnation region. Then expansion of the second member of the ._ .: --
right side of equation (A4) yields

in which the only term retained is 2(b2@y2)(&@y). Simil= expansion
of the last member of equation (Ah) gives —

Note that from equation (A3), bSu/&bx iS equivalent to -(?)3v/b~) ~d
will therefore be neglected. The terms retained in this equation, then,
are (av/ax)(a%/axay)+ ~(a3v/ayw). These terms CSLI be combined htO

.—

- % (~w Equation (Ah) thus is reduced-to

a ()a2u a~+2—= .—
z p ax2 a?

The derivative ?h@y vanishes at the
the immediate region of the stagnation
approximate from

(A5)

surface of the body, so that in
point, eqyation (A5) takes on the

(A6)

This expression will be taken to hold near the stagnation streamline
throughout region 2.

.
—
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APPENDIX B

BOUNIARY VELOCITIZ?S

For hypersonic Mach numbers,
shock wave is

Ps

AND

the

7s

PRESSURE DERIVATIVES

density ratio across an oblique

+1——=—
Pm 7~-1

then the pressure just downstream of the shock

2pmum2cos%
Ps =

7s+1

.
where cr’is the acute angle between the shock

37

(Bl)

is

(B2)

wave and the normal to the
free-stream velocity vector (see ref. 9). It can also be shown that the
v component of velocity just downstream of the shock is

Vs = * U&sin a cos cr (B3)
s

while the u component on the stagnation streamline is

7s-1
‘s =—um

7s+1
(B4)

In evaluatti the derivatives, consider a shock wave with radius of
curvature Rs. L~t s be the disknce along this profile measured from
the stagnation streamline and x(s) and y(s) be
shock-wave coordinates. Then

the-equations for the

dv av b av Q—= ——— .
ds ax ds ‘ayds

while

(B5)

+ ap d2x—— ~~ (B6)
ax ds2 + ayds2

—
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In terms
x(s) and

of the radius
y(s) are

-.
cd!mm!mm~

of’ curvature Rs, the

(dx=R~l-cos~
Rs

dy = R@n $

differential

)

NACARMA55E02

equations for
.

(B7)

and at the stagnation streamline (ds = O) the following conditions hold ..

(B8)

7

@l—=
ds

dx
-o

z-

d%-o
ds2

d2x 1

G ‘g~ 1---

Then, at the stagnation streamline, equations (B5) and (B6) become

and

Now by continuity and equations (B3) and (B9)

()auzs=- () Z?rJm$s’ -
(7s + l)Rs

(B9)

(B1O)
.—

(Bll) -
—

.
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for two-dimnsional flow. For axially symmetric flow the corresponding
relation is

($)s.=-2(*)‘ - * (B12)

According to equation (B2) the first right-hand

d~__ 4PaYa12
ds2 (7S +l)R.2

term of equation (BIO) is

(t!)while the next term, - ~ —
Rsa~

, is evaluated using the

eq.mtion (eq. (l)) which for the nonviscous incompressible

the stagnation stresml.ine reduces to

b au
X=-PUG

x momentum

flow region on —.

and

ap 4(7s - 1) P#m2—=
ax (7s + 1)2 Rs

for the two-dimensional and the axially syametric
Then the corresponding second partial derivatives

(B13)

flow cases,
of yressure

(B14)

(B15)

(B16)

respectively.
are

According to equations (B1.1)and (B12), eqpation (B14) becomes

b 2(7s - 1) pJJm=

= = (7s + 1)2 Rs

a%_- 6(7s ‘l)PSUm2

ay2 (7s + 1)%s2
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and

Note that 7, can

. NACA RM A55E02

~=- 8(7~ - 1)Ps%2

&2
(N8)

(7s + 1)%.2

have values somewhat clifferent than 1.4 if vibra-

. —
—

———

tional and dissoc~ational energies are excited at the shock wave. The —

results of this app~ndix are consistent if ~s is defined by equation (Bl) “-
from the ratio of densities across the shock wave. When additional ener~
modes are excited at the shock wave, this effective value of 7s is not
exactly the ratio of specific heats.

It can be seen that for the case of a yawed two-dimensional body, the
ssme rehtions hold as for the body at zero yaw except that the velocity
Uw is replaced by the normal component of velocity, Umcos X. Thus the

.—

yawed two-dimensional body has a second derivative of pressure
——

--—

a2p_- 6(7 - l)p Umzcos=x

by2 (7s + 1)2RS2

In the above relations the radius of curvature of the
is yet undetermined. In the limit of infinite free-stream
the ratio of shock wave to body curvature, Rs/Rb, might be

(B19) -

shock wave Rs
Mach number,
expected to

approach unity as an upper bound. On the other hand, a value-of Rs/Rb
consistent with incmnpressibleboundary-byer solutions may be a reason- –
able lower bound. In this regard Howarth (ref. 7) reports that for two-

.-

dimensional flow

(B20) _ : _

which, according to equations (B4.)and (Bll), corresponds to a ratio

Rs I—=— (B21)
% 7-1 ...

Sibulkin (ref. 14), using a similar analysis finds that —

av 3US—=—
by 2Rb “-

(B22) ‘- -:

.
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for axhlly syzmne%ricflow. !l%iscorresponds %0 the ratio

Rs 4—=—
Rb 3(7 - 1)

41

(B23)
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APPENDIXC

KEAT TRANSFERTO AN AXXKGLYSYMMETRICSTAGNATION REGION
,

The methods used to calculate the rate of heat transfer to a cylin-
drical stagnation region can also be applied to the stagnation region of
a spherical body. This analysis is parallel to that for the cylinder at
zero yaw and thus the x axis is taken as the stagnation streamline and
the origin of the coordinate system is placed at the interface between
the assumed incompressible nonviscous region 1 and the viscous, low-
velocity, compressible region 2. For the purpose of obtaining the solu-
tions for velocity in regions 1 and 2 on the stagnation streamline, it
is most convenient to consider the momentum and continuity eqyations in
cylindrical coordinates. Because of axial symmetry, all properties are
independent of the angular coordinate and, accordingly, the r direction
momentum equation becomes

(cl)

While the continuity ecyxationis

In region 1
the r momentum

—

..——
—

.-

—

—
—

1(Uax p)+~&(prv)=O ,-(c:)

—

where the viscous terms are considered identically zero,
equation (eq. (Cl)) reduces to

( av+
‘Uax

Differentiating e uation (C3) with

7factors v and & ax, which vanish

)av = ap
‘s ‘%

(C3)

respect to r and dropping terms with
on the stagnation streamline, gives ,-.
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.
Now the continuity equation (eq,.(C2)) expands to

&+z+p+=o
‘ax r

(C5)

however, on the axis of’symmetry, neglecting terms M.gher than second
order in r,

av v—=.
& r

(c6)

Thus, for incompressible flow, the continuity equation on the stagnation
streamline reduces to

au av
x+2x=0

Substituting equation (C7) into equation (C4) yields

which, upon differentiating
1 a%— — = constant, becomes
~ &2

.

with respect to x, and assuming

(C7)

(c8)

(C9)

For nonzero values of the velocity u, this differential equation has as
a solution

%“u=—
2

X2 + Uo’x+ Uo (Clo)
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The value of velocity at the interface,-uo, is again
small. T%us, from equation (c8), the first derivative of
interface is, approximately,

r~ ~2p ---
.- —

uo’=- P &2

NACA RMA55E02

.
considered very .—
velocity at the

.

;
(cl-l)

As can be seen from the solution for velocity, equation (C1O), the second -
derivative of velocity is constant. Therefore the second derivative of - ---
velocity may be evaluated from eqpation (c8) USing conditions just behind ~ ___
the shock wave, thus, -.

us ,2

()

+ 2 $p
Uo” = —

2-US Usps &2 s
(C12)

Substituting for the values of velocity, velocity derivative, and
.

second pressure derivative behind the shock wave (see Appendix B) yields

8(3 - 27s) ~
Uo” =

7s2 - 1 Rs2

and

44- u.
Uo’ = - —

7~+1 Rs

(C13) ----
—

.(C14)

Now in region 2, the viscous terms are retained in equation (Cl).
Following the procedure used in studying two-dimensional flow (see Apyen-
dix A), the r momentum eqyation, differentiated with respect to r, is

.-

simplified to
*

()~ ~a2u a2p.—= -—
ax 2 a~ ar2

which integrates to

~ a2u a2p ““.—= -—
2 as

X+A
&2

.



~CA RM A551z02

.
and, as in the case of the two-dimensional flow,

wall= a2-QX2

Zz
-— —+ Ax+B
arz 2

45

(C17)

The constants A and B are again determined by matching the first and
second derivatives of velocity at the interface. Thus

Vouo”
A=—

2

Wouo ‘
B=—

2

(c18)

.
At the body aufix vanishes, and solving for the coordinate Xb frcm
equation (C17) results in

In Appendix B it is shown that

a2p 8 pmumz-— —~=
ys + 1 RS2

Thus from equations (C13), (C14), and (C20), it can be shown that

which is
Reynolds

.

?)2p U.’
4—

. (Y-l)’-)&% ~%

&2 POUO’*2 (3 - =7’)2 V. Rb

large compared to unity
number (of the order of’

(C19)

(C20)

(Ca)

for any reasonably large value of
hundreds or greater). Therefore, if

.
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.
quantities of the order of unity are neglected in eqyation (C19), the .
stagnation point coordinate reduces to -.

.

(C22) —

which is identical in form to the relation for body surface coordinate
in the two-dimensional flow (eq. (19)).

Next, in region 1 the viscous dissipation and heat-conduction terms
are again neglected in the energy equation, and terms that vanish by

—

reasons of symmetry along the stagnation streamline are dropped. Thus
the energy equation for region 1 takes the same form as equation (23) for

—

the two-dimensionalproblem and, since the interface velocity is small, - . _
——

the interface temperature TO is again approx.mtely the stagnation tern-”
perature Tt.

In region 2, the heat-conduction
dominate, and the eqyation reduces to
equation in the variable q

In order to fit
solution is given in

.
terms in the energy equation pre-
the three-dimensionalLaplace

_.

(C23)
—

the boundary conditions on a spherical surface, the .-
terms of spherical coordi~tes_(i?, e, and (p). The

general solution which preserves symmetry about the x
—

axis (i.e., which
is independent of Q) is

co

1( D
v =A+#+ Cnr

)
-n+* Pn(cos e) (c24)

r
n.1

where Pn(cos e) is the nth order Legendre polynomial in cos e. If it
is required that v be a constant, qb, on the surface of the body, equa-

—

tion (c24) can be reduced, on the stagnation streamline, to —

(C25)

—

.
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then expanding in terms

CQ

where L is B+
-~ I

n=l

E, evaluating q at the
one obtains for equation

of G=% - 1 <<1, results in

=~+L(~-e2) +... (c26)

Cn(2n+ l)Rbn.Neglecting the quadratic term in

interface, and transforming to the variable x,
(c26) on the stagnation streamline

Then the rate of heat transfer to the stagnation point is

J

To

%’=-=* ‘m
%

(C27)

(c28)

which is identical in form with the zero-yaw solution for the two-
dtiensional-flow problem (eq. (31)). Note, however, that the second
derivative of pressure given by equation (B18) is larger by a factor
of 4/3 than it is for the corresponding two-tiensional-flow case with
the same shock-wave curvature (eq. (B17)). Thus xb givenby equR-
tion (C22) is changed by the factor (3/4)1’4 and the rate of heat trans-
fer to an axially symmetric region becomes

while the corresponding expression for Nusselt number is
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APPENDIX D
3.

EXAMINATION OF ANALYTICAL RESULTS AND ASSUMPTIONS
,

A number of assumptions have been made in the theoretical analysis,
and it is desirable now to show that the solutions obtained are both
realistic and consistent with these assumptions. h particular, it will
be shown that the presumption of a constant second derivative of pressure
normal to the stagnation streamline yields solutions for the distance
between shock wave and body which are reasonably close to observed values.
Secondly, it will be demonstrated that the u velocity throughout
region 2 is indeed small, as assumed in the analysis, if the Reynolds num-
ber is large enough for continum flow conditions. In addition, it will.
be shown that for region 2 the viscous-dissipation terms due to the
u and v component velocity derivatives are small compared to the heat-
conduction terms in the ener~ equation, again provided the Reynolds num-
ber is not too small. These findings, then, help to justify the manner
in which the momentw and energy eqyations were treated in the analysis.

Now it is obvious that the ass~tion of an abrupt transition from
non~iscousj convective flow to viscous, conductive flow is a substantial
idealization of the actual flow.l It is possible, however, to make a
gross check on the self-consistency of this model by comparing the amount
of heat convected across the interface with the mount conducted to the
body surface. When this is done it is found that from a heat-flow point
of view, the model is self-consistent (i.e.,heat convected protides for
heat conducted).

As a final point, a comparison will be “~de between the analysis of
this paper and the heat-transfer solutions for low-velocity flow given by
Howarth (ref. 7) and Cohen and Reshotko (ref. 8).

—
—

—

.-.-

.-

.

—
.

.—

—

-.

Distance Between Shock Wave and Body

Consider first axially symmetric flow. The velocity in region 1 was
found tobe (eq. (C1O))

UOII

u =UO+UO’X+TX2 (Dl) L--

%trictly speaking, this idealized model should be considered simply
a first approximation to the correct situation. A second approximation

.—

would be to divide the domain between the bodj and shock wave into three
regions rather than two as was done here. .. .



Then, the shock-wave coordinate must be

. 1
XG = ‘s - Uor

%“

It can be shown from the relations in Apyendix B and eqyations (Cll)
and (C12) that

4um
us’ = -

(7s +l)Rs

r 4 a2p kumI_
‘o ‘- --—=- J-

P &2
(2’s +l)Rs

8(3 - 27) Um
Uo” =

7s2 - 1 RS2

Substituting these relations into equation (D2) ~elds

% -- ‘7s- 1)[1- ~~]
~- 2(3 - 27s)

49

(D2)

(D3)

(D4)

Note that for 7s = 1.5, ~“ vanishes and the velocity profile becomes
linear. For this case xs/Rs reduces to (7s - 1)/4.

The actual distance between the body and the shock wave is, of course,
the sum of xs and xb. However, it can be shown from equations (C22) and
(D4) that x~ is small cbmpared to xs for reasonably large Reynolds
numbers, and xb will therefore be neglected. The ratio xs/Rs calcu-
latedfran eqgation (D4) for 7s equal 1.4 is 0.10.5. Measurements of
Xs/Rb taken frcm spark photographs of high-velocity spheres yresented
by Charters and Thomas (ref. 15) and Dugundji (ref. 16) approach this
value closely at high Mach numbers (i.e., xs/Rb about O.11 at Mch num-
ber 4). Heybey (ref. 17) has developed a theory which fits the data of
references 15 and 16 closely and, for the limit of infinite Mach number,
predicts xs/Rb about 0.12. Thus it is seen that at high Mach numbers,
the assmrption that the second derivative of pressure is constant and
that the ratio ~/Rs is near unity yields results which are consistent
with experimentally observed distances between shock wave and body, as
well as with the theory of Heybey.
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It is of interest to
dimensional flow as well.
region l-for this case is

and thus

calculate the shock-wave coordinate for two-
.

Recall that the solution for velocity in
“F?

U. t
u = — Sinh Cx

c
(D5)

——

au- Uo’ cosh CX
G-

The velocity derivatives at the shock wave and at the interface, given
in Appendix B, are, respectively,

2um
%’ = -

(7s +l)R~

r 1 a2p u. J-uo!=.-——-
Pap= (7s +l)Rs

Then the product Cxs is given by

cx~ = arc cosh
&

With Cx~ known and the velocity at the shock wave

7s-1
us =—um

7~+1 --

The shock-wave coordinate becomes

Xs Ar7f3-1 Cxs

g=- 6 SiliilCX6

.

.

(D6)

(D7)

(D8)

—

(D9) -

.
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.
For a 7S of 1.4, Cxs takes the value 0.75 and since the sinh func-
tion is very nearly linear over this range, rather close bounds on the
shock-wave coordinate are imposed by“

us us
—<X6 < —
us ‘ ‘o ‘

or

. .

The exact
-.

According
should be
sphere.-

The

7s-1 % IJ 7s-1
—<—

2 < R~ 6

(D1O)

(Dll)

theoretical solution for xs/Rs
to the theory then, a shock wave
detached from a cylindrical body

at ys =1.4 is 0.236.
with given radius of curvature

about twice as far as from a

Magnitude of Velocity in Region 2

y momentum equation in region 2 was reduced to

The left side of this equationmaybe

presumption that velocity in region 2
be integrated to

Solving for ~, noting
frcm equations (14) and

.

.

approximated by

is small. Then

i)2pX3 + !-LOuo’x + PO%._._7

(D12)

& (W) with the

equation (D12) may

(D13)

that velocity vanishes at xk, and substituting
(19),one ob&ns “-

=- (D14)
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It follows that the ratio of interface velocity to the velocity at the -
shock wave is given by

2

()
‘JO = 8 IJo uo’

()

16 “PO ‘b
~ ..— —=-— ——

9 Ps’-ls%1 9 Pm %

which On
becomes

substituting the relations given in_Apyendix

.

‘JO‘
y (D15)

B for Uo: and us

(D16)

It can be seen that for large Reynolds numbers, of the order”o~ –
hundreds or-greater, the velocity at the-interface is small compared to
the velocity at the shock wave. Since the velocity in region 2 is every- -

.—

where less than at the interface (see eq. (D13)), the solutions obtained
for velocity are consistent with the assumption that velocity is small

—

throughout region 2.

Viscous Dissipation in Region 2

Although the derivative of velocity vanishes at the body surface, it
increases parabolically (see eq. (D12)) to %’ at the interface. Since
viscous dissipation terms due to this velocity shear were neglected in
solving the energy equation, it will be showh that the maximum value of
these terms, which occurs at the interface, is small compared to the heat- - “=
conduction terms like a2~/ax2 (note that by continuity ?h@y contributes

.-

a dissipation term of the same magnitude as &/ax). From equation (30)
it can be seen that the term a2v/ax2 is ne”arlyconstant everywhere along

—

the stagnation streamline in region 2. Then .tberatio of differential... ..._______
terms in the energy equation is, by eqpations.(30) and (D14),

41-lo(uo‘)2 = 9POU02

(a2q/ax2)b ~
R, ( co k d,)-’ (D17)

If equation (D17) is evaluated for constant heat capacity and thermal
conductivity proportional to the nth power of temperature, there is
obtained

.

4PO(U0’)2
(.)2 ‘r@= 18(n+ 1) =

(a2v/ax2)b
(D18) . ‘-
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.
Substituting for velocity ratio uo/Um from eqwtions (D16)
and for the ratio Rb/Xb from equation (21), there results

1

53

and (B4)

ko(uo’)2
16(n+ l)pr

(&$@X2)b = (-)’ (+y” (t~’2(%y’2Rem-=’2,D~,,

Once again

conditions

the energy

the square root of Reynolds number is the predominant term for
of continuum flow and thus the viscous dissipation terms in
equation are small comyared to the conduction terms in region 2.

Heat Convection Across the Interface, x = O

Next consider the ratio of the heat convected across the interface,

J

I’o
Puo Cpm, to

o

‘~b‘●
The value

ti.on(32) @elds

Again evaluating

the heat transfer at the stagnation ~oint of the body,

of U. given by equation (D14) and -qb’

for constant heat capacity
ture function for thermal conductivit~, an~
~d (19)that ~r~2 reduces tO -(~o/p),

.L.
b

from eqm-

(D20)

and the nth power tempera-
noting from equations (14)
one obtains

1) (D21)

This ratio is the order of unity, and thus the right magnitude of heat
is convected across the interface to balance the heat conducted to the
body. The above result also provides a check on the value of Xb which
was obtained by retching ~’ as a boundary condition of the y momen-
tum eqwtion.
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Low-Velocity Heat Transfer

For hypersonic velocities it was found that taking shock-wave curva- .7
ture equal to body curvature on the stagnation streamline gave approxi-
mately the correct answer for the distance between the body and the shock
wave, so presumably the ratio Rb/Rs should be taken near unity when cal-
culating the heat transfer as well. Undoubtedly this ratio will be some-
what less than unity for low Mach number supersonic flow, and it is of
interest to see what the solutions developed in this paper will yredict
for this case (even though the assumptions made in the analysis are not
expected to hold as well for the low-velocity flow conditions). For this
purpose it is convenient to express the body coordinate Xb in terms of

[

&/~y)o which by continuity equals -~!. From equations (9), (14), and
19)

‘“K
(D22)

then solving for Nusselt number from equations (32) and (34) for the case
of the cool wall (!L&/To< < 1, and n = 1/2) one obtains

The method of boundary-layer solution for low-velocity
der given in reference 7, yields for the derivative of
normal to the stagnation streamline at the edge .ofthe
the notation of this paper,

()& 3.8U6

by ‘~

Substituting in equation (D23) results in

(D23)

flow about a cylin-
velocity component
boundary layer, in

(D24)

Nu = 0.92 Res
1/2

where the smll differences between us and V. are ne~ectedc The con-
stant 0.92 compares favorably with the value 0.95 given by Howarth for
Pr = 0.72. This ag??eementis especially remarkable in the light of the
fact that the analysis of reference 7 is for constant thermal properties,
while variation in thermal properties is an essential feature of this
analysis.

c!o~

-.

.

.

.—

.—

.-

.

—

—

.——

—

—
-

—
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Cohen and Reshotko (ref. 8) find t~t’the
boundary layer gives the following relation at
axially sy?mnetricbody

solution for a
the stagnation

y = 0.440J?

for the case of a cool wall anda Prandtl number 0.7. If the

55

compressible
point of an

(D25)

radial com-

ponent of velocity v is taken proportional to Y, the ordinate can be

eliminated and equation (D25) reduces to

Nu= o.k40~
F“

(D26)

The factor 0.440 given by Cohen and Reshotko compares favorably with the
factor 0.47 given in eqpation (D23).
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APPENDIXE

ESTIMATEOF RESERVOIRTEMPERATURESIN

NACA RM A551D2

.

THE E3T’ERSONICGUN TUNNEL

A highly nonisentropic compression proc~ss, like the multiple reflec-
tion of shock waves that occurs in the reservoir section of the hypersoriic
gun tunnel, is capable of producing high final air temperatures. An esti- ““
mate of the magnitude of the reservoir temperatures attainable in the &n ““
tunnel
air to
(i.e.,

is obtained by equating the internal energy gained by the reservoir
..—._

the work done in compressing this air: Thus assuming no heat loss
adiabatic compression) we have

T2 V2

Plvl J CvdT =- J p dV (~)
T1 v~

where the subscripts 1 and 2 refer to conditions before and after the com-
pression, V is the volume of
constant volume. In terms of
pressure, ~, eqpation (El) is

- Tl) = F(V1-V2)

the gas, and Cv is
an average specific

the specific heat”at
heat, ~, and a mean

(E2)
..

By substitution of the mass conservation relation, p= p= = V2/V , the ideal/’
gas law p = pRT, and an average,ratio of specific heats ~ de~ined by
7-1= Rfi, equation (E2) can be transforinedto

(E3)

Now the mean pressure during the compression process will probably be less
than the final pressure, pa, but greater thgn the average (pl+p2)/2. If
these values are taken as the limits of ~, and in addition PI is very
small compared to P2, the temperature limits given by eq~tion (E3)
become approximately

(E4)

.

—.—

.
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.
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.

.

.
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,- For an average
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ratio of specific heats 7 = 1.3, the limits become

0.13 ~ <~< 0.23 ~
P= - T1 P= (E5)

The compression ratio realized in the hypersonic gun tunnel is presently
about 32. Then for an initial temperature T, = 530° R, the reservoir
temperature limits indicatedby equation (E5)-sre

2200° R~T2 ~39~0 R

Recall that the reservoir temperature deduced from

(E6)

the velocity measure-
ments is 2200° R, the lower l-~t given by equation (E6). Und&btedly
the temperature corresponding to no heat loss from the reservoir would
be somewhat higher than this, however. It is interesting to note that

. an isentropic compression of the same value, with no &at losses, would
yield a final reservoir temperature T2 of only u80 R.

.
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APFWNDIXF

PRORLEMS IN CONNTX!TIONWITH

NACARM A55E02

CALIBRATING

THE HYPERSONICGUN TUNNEL

Static-Pressure Measurements

The static pressure system is considered to respond exponentially
to the true static pressure which is in turn assumed to be proportional
to the pitot pressure. In this event we may write

dp
- ~ (Kpt - p)

Z-T
(Fl)

where T is the time constant of the system, and K is the ratio of
static to pitot pressure. By integration of eqwtion (Fl), the constants
T and K stand in the linear relation .-

The
the
of

jt p dt HJtptdt
o

=K 0 -T
p(t) -p(o) p(t)-p(o)

(F2)

above integrals of pressure are evaluated as a function of time from
measured static-pressure and pitot-pressure data. Then the vs@es
K and T are determined by the linear regression giving the least

mean squares fit. It was found (see fig. 13) that a time constant
= 0.060 second snd a ratio of static to pitot Pressure K = 8906x&

lit the pressure data shown in fi~es 5(c) .gnd5(d) ~t~n a few Percent ~
over the entire interval of flow the from O to 0.3 second. Accordingly,
it is indicated that the value of p/H, cor??ectedfor time lag in the
static pressure measuring system} is 5.3~0-8 over t~s t~e interv~o

Condensed Phase Impurities

It was observed during the course of eijjerimentingwith the hyper-
sonic gun tunnel that the condensed phase impurities are absent from the .._
shadow of models in the air stream. This observation suggests that the
energy carried to.a model by these impurities may vary in proportion to
the frontal area of the model. In this event, the heat transfer should

.

.

—

—

.—

.

.
—
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.
tend to vary directly as the Re~olds number for the case of circular
cylinders in the ssme stream. However, according to both theory and
experiment (see fig. 9) Beat transfer varies like the sqyare root of*
Reyuolds number. There is added reason, then, to believe that condensed
phase impurities have but a small influence on the initial heat-transfer
rates presented in this paper.
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APPENDIXG
.

EFFECTS OF DISSOCIATION ON HEAT TRANSFER TO

A C3!LINDRICALSTAGNATIONREGION

Temperatures in the disturbed flow about a vehicle
flight may be sufficiently large (of the order of 5000°

in hypersonic
R or greater) to

dissociate air molecules into atoh. Rates of dissociation a=e not ~res-
entl.yknown with any degree of certainty, however, and it is therefore —-.—..-

diff~cult to estima~e w~ether the exten~-of dissociation will be negli-
gible, partial, or in complete equilibrium in the time scale of flow
about hypersonic vehicles of practical.size. Since equilibrium disso-
ciation is a limiting case, it is this sit~”~ion which w%Il be treated
here.

To a first approxh.ati.onthen, the tewmerature ratio across the
shock wave is det~-%ined by the refition -

Uma
ha=—=

YmR(Ta)TmMm2

2 ,2 -

since the specific enthalpy, h~, is considered q

..—

(Gl)

known function of tem-
perature for a given pressure.- If the free-stream static pressure is
neglected, the momentum equation becomes

—

P~ + Pau62 = Pmum2 (G2)

and substituting from the continuity relation

psu~ = pmum (G3) _

and the eqmtion of state .—.

P = PR(T)T (G4)

.—.—

,=
.-

.

.——
.

—

—
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the ratio of densities across the shock wave becomes

61

2=+-W ~
Then if ys is defined byl

P YR-l
A=
Ps 7s+1

the pressure ratio across the shock wave is

PS 2YM2mm.=—
7s+1 (G7)

Pw

Worn the equation of state (Gk) and eqpation (G6), it follows that an

(G5)

(G6)

equivalent expression is

Ps 7s +lTS R(TS)
—=— ——
??m 7s - lTmR(Tm)

(G8)

where the ratio.of specific gas constants R(Ts)/ R(Tm) is also considered
a known function of temperature for a given pressure. Equations (G7)
and (G8) are solved for 7s; then the rate of heat transfer to a cylindri-
cal stagnation region maybe calculated from equation (33). Note that it
is unnecessary to determine 7s with great precision, since it is the
fourth root of (7s - 1) which appears in equation (33).

The above calcuhtions were made for a cylindrical stagnation region
for the case of equilibrium dissociation at one atmosphere pressure and

%his definition is used merely for convenience, so that the con-
stants given in the heat-transfer solution (e”q.(33)) do not change in
form.
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free-stresm temperature, ‘&, eqpal @C)O R.2 The enthal~y and specific
. .

gas constants were taken from data tabulated by Kkeiger and White
-.

(ref. 18) and the transport properties were q.pproximatedby simple
,—

kinetic theory relations for a gas conrposedof hard spherical particles”
-.

(see ref. 19). The quantitative accuracy of thinsap~roxtition is not
high, of course, and the analysis cannot be expected to yield more than
the order of magnitude for dissociation effects. The results of these
calculations are presented in figure 12 both for flow in a state of

.

equilibrium dissociation and for flow in which dissociational ener~ is-
not excited. The calculated rates of heat transfer are higher when disso-
ciation occurs but not in proportion to the @ge order of magnitude

—

increase in transport properties. The explanation-f”orthis result is
that the increase in transport properties is largely compensated for by”” - “-”-
!areduction in temperature level as the random kinetic energy is absorbed ‘- =
In the dissociational energy modes. ti fact, as a result of thts com-
pensation, Beckwith concludes on the basis of a boundary-layer analysis
(ref. 20), that the heat-transfer rate per unit area at the sta~tion
point is only slightly affected by equilibrium dissociation. A close
comparison of the results of this paper with Beckwith’s results would

.

not seem warranted until the properties of dissociated air are more .-

accurately known.

2These conditions correspond roughly to upper atmosphere flight con-
ditions (i.e., about 100,000 to 150,000 feet sltitude at Mach numbers from “ “-
10 to 20). At lower altitudes, higher pressures will be encountered
behind the shock wave and the equilibrium dissociation will be less. 1%
should be remembered, of course, that equilibrium dissociation may not

.

occur in actual flight if the rate process is slow enough (see, e.g.,
ref. 21 for a discussion of dissociation rates). -
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